Welcome to Mindspark

Please Enter Your Mobile Number to proceed

Get important information on WhatsApp
By proceeding, you agree to our Terms of Use and Privacy Policy.

Please Enter Your OTP

Resend OTP after 2:00 Minutes.

(a-b) ^3 formula – Derivation – solved examples – FAQ

(a-b)^3 formula

The formula for the expansion of (a-b)^3 is \left(a^{3}+3 a b^{2}-3 a^{2} b-b^{3}\right).

It is the formula for the cube of the difference between two numbers.

Derivation

We can write (a-b)^{3} as the product of (a-b) multiplied with itself three times.

(a-b)^{3}=(a-b)(a-b)(a-b)

\rightarrow(a-b)^{3}=\left(a^{2}+b^{2}-2 a b\right)(a-b)

\rightarrow(a-b)^{3}=\left(a^{3}+a b^{2}-2 a^{2} b-a^{2} b-b^{3}+2 a b^{2}\right)

\rightarrow(a-b)^{3}=\left(a^{3}+3 a b^{2}-3 a^{2} b-b^{3}\right)

Hence the expansion of (a-b)^{3} \text { is }\left(a^{3}+3 a b^{2}-3 a^{2} b-b^{3}\right)

 

Check

Let us take a=9and  b=5

\mathrm{LHS}=(a-b)^{3}

=(9-5)^{3}

=4^{3}

=64

\text { RHS }=a^{3}+3 a b^{2}-3 a^{2} b-b^{3}

=9^{3}+3 \times 9 \times 5^{2}-3 \times 9^{2} \times 5-5^{3}

=729+675-1215-125

=729+675-1215-125 =64

LHS = RHS

\text { Hence }(a-b)^{3}=\left(a^{3}+3 a b^{2}-3 a^{2} b-b^{3}\right)

Physical representation

Suppose there is a cube of side “a” cm. If we shorten each side by “b” cm, then the volume of the resultant cube is equal to(a-b)^{3}

Solved Examples

\text { 1. Expand }(2 a-b)^{3}

(2 a-b)^{3} =\left((2 a)^{3}+3(2 a) b^{2}-3(2 a)^{2} b-b^{3}\right)

=8 a^{3}+6 a b^{2}-12 a^{2} b-b^{3}

2. Find the value of \left(m^{3}-n^{3}\right)if m-n = 5 and mn=36

(m-n)^{3} =\left(m^{3}+3 m n^{2}-3 m^{2} n-n^{3}\right)

 \rightarrow(m-n)^{3}=m^{3}-n^{3}-3 m n(m-n) \rightarrow m^{3}-n^{3}=(m-n)^{3}+3 m n(m-n)

\rightarrow m^{3}-n^{3}=(5)^{3}+3 \times 36 \times 5

\rightarrow m^{3}-n^{3}=125+540=665

Hence \left(m^{3}-n^{3}\right)is equal to 665

 

3. Expand (a-3 b)^{3}+(4 a-b)^{3}

(a-3 b)^{3}=\left((a)^{3}+3(a)(3 b)^{2}-3(a)^{2}(3 b)-(3 b)^{3}\right)

=a^{3}+27 a b^{2}-9 a^{2} b-9 b^{3}

(4 a-b)^{3}=\left((4 a)^{3}+3(4 a) b^{2}-3(4 a)^{2} b-b^{3}\right)


=64 a^{3}+12 a b^{2}-48 a^{2} b-b^{3}

(a-3 b)^{3}+(4 a-b)^{3}  =\left(a^{3}+27 a b^{2}-9 a^{2} b-9 b^{3}\right)+\left(64 a^{3}+12 a b^{2}-48 a^{2} b-b^{3}\right)


=65 a^{3}+29 a b^{2}-57 a^{2} b-10 b^{3}

\text { Hence, }(a-3 b)^{3}+(4 a-b)^{3} \text { is equal to } 65 a^{3}+29 a b^{2}-57 a^{2} b-10 b^{3}

 

Free Trial banner

Explore Other Topics

Ready to get started ?

Frequently Asked Questions 

    Q1: What is the expansion for (a-b)^{3}?

    Ans: The expansion of (a-b)^{3} \text { is }\left(a^{3}+3 a b^{2}-3 a^{2} b-b^{3}\right)

    Q2. What is the expansion for (a-b)^{2}?

    Ans: The expansion of (a-b)^{2} \text { is }\left(a^{2}-2 a b-b^{2}\right)

    Q3. What is the expansion for a^{2}-b^{2}?

    Ans: The expansion of a^{2}-b^{2} \text { is }(a-b)(a+b)